If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2X^2-8X-61=0
a = 2; b = -8; c = -61;
Δ = b2-4ac
Δ = -82-4·2·(-61)
Δ = 552
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{552}=\sqrt{4*138}=\sqrt{4}*\sqrt{138}=2\sqrt{138}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{138}}{2*2}=\frac{8-2\sqrt{138}}{4} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{138}}{2*2}=\frac{8+2\sqrt{138}}{4} $
| y2–2y=0 | | 3b-15=69 | | 9r-20=34 | | -2(8d+8)=208 | | 2(8d+8)=208 | | 2j+45=97 | | 4k+21=93 | | 4x+7(3x-2)=19x+16 | | 27+6s=81 | | 6^(3x)=12 | | 6^3x=12 | | 16+x=5x+4 | | 50=2x=2 | | y−496=6 | | 10-6x-6-9x=-7 | | 32−5k=2 | | x2–x–1=0 | | 18x+54=15x-20 | | -8(g+94)=-48 | | 9x+8x+4=140 | | 10-6x-6-9=-7 | | -2m+3×(3-m)=-5m-9 | | 6x-6=1/3(x-6) | | 30x+60=54x-108 | | 16x^2=-15-32x | | 54x-108=30x-180 | | -2(41+3a)-2=3a+33 | | x/0+3=5 | | 7(n+4)=21= | | 2x-24-4x=12(x-3) | | 3m+18=45 | | (30+(12-2x)+(12-2x))(x)=92 |